几个函数泰勒展开式及其记忆技巧
ZhaoYingChao88
2018-05-03 09:44:49
51683
收藏
23
分类专栏:
maths
文章标签:
math
最后发布:2018-05-03 09:44:49
首次发布:2018-05-03 09:44:49
本文为博主原创文章,未经博主允许不得转载。如果对你有帮助,请记得点赞支持,谢谢!
本文链接:
https://blog.csdn.net/ZYC88888/article/details/80175511
版权
几个函数泰勒展开式及其记忆技巧。
点赞
45
评论
8
分享
x
海报分享
扫一扫,分享海报
收藏
23
打赏
打赏
ZhaoYingChao88
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
泰勒
展开式
04-03
231
数学中,
泰勒
公式是一个用
函数
在某点的信息描述其附近取值的公式。如果
函数
足够平滑的话,在已知
函数
在某一点的各阶导数值的情况之下,
泰勒
公式可以用这些导数值做系数构建一个多项式来近似
函数
在这一点的邻域中的值。
泰勒
公式还给出了这个多项式和实际的
函数
值之间的偏差。
泰勒
公式是将一个在x=x0处具有n阶导数的
函数
f(x)利用关于(x-x0)的n次多项式来逼近
函数
的方法。 若
函数
f(x)在包含x0...
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
“速评一下”
数学之美---
函数
的
泰勒
(Taylor)
展开式
Dean
04-08
10万+
泰勒
公式
泰勒
公式是将一个在x=x0处具有n阶导数的
函数
f(x)利用关于(x-x0)的n次多项式来逼近
函数
的方法。若
函数
f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中, 表示f(x)的n阶导数,等号后的多项式称为
函数
f(x)在x0处的
泰勒
展开式
,剩余的Rn(x)是
泰勒
公式的余项,是(x-x0)n的...
泰勒
公式(
泰勒
展开式
)通俗+本质详解
吴明磊的博客
03-03
15万+
比较通俗地讲解一下
泰勒
公式是什么。
泰勒
公式,也称
泰勒
展开式
。是用一个
函数
在某点的信息,描述其附近取值的公式。如果
函数
足够平滑,在已知
函数
在某一点的各阶导数值的情况下,
泰勒
公式可以利用这些导数值来做系数,构建一个多项式近似
函数
,求得在这一点的邻域中的值 所以
泰勒
公式是做什么用的? 简单来讲就是用一个多项式
函数
去逼近一个给定的
函数
(即尽量使多项式
函数
图像拟合给定的
函数
图像),注意,逼近的...
浅显易懂——
泰勒
展开式
SoHardToNamed的博客
06-02
9万+
第一次见到
泰勒
展开式
的时候,我是崩溃的。
泰勒
公式长这样:好奇
泰勒
是怎么想出来的,我想,得尽量还原公式发明的过程才能很好的理解它。首先得问一个问题:
泰勒
当年为什么要发明这条公式?因为当时数学界对简单
函数
的研究和应用已经趋于成熟,而复杂
函数
,比如:这种一看就头疼的
函数
,还有那种根本就找不到表达式的曲线。除了代入一个x可以得到它的y,就啥事都很难干了。所以
泰勒
同学就迎难而上!决定让这些式子统统现出原形,...
是!“不会数据分析的,全是假程序员!”HR:太真实......(附资料,建议白嫖)
CSDN学院
11-10
3万+
数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……大到企业的销售、运营数据,产品的生产数据,交通网络数据…… 如何从海量数据中获得别人看不见的知识,如何利用数据来武装营销工作、优化产品、用户调研、支撑决策,数据分析可以将数据的价值最大化。 所以无论你做产品,运营,HR,财务,还是做研发,系统架构,在数不清的场景下,数据分析都是基本功,它不是一个职位,而是一个技能。 因此,我们才会说,学习数据分析,无论你的职场目标是什么,基本都是必须的,而且不会过时。 但是一提数据分析,很多人就
泰勒
(Taylor)
展开式
(
泰勒
级数)
mjiansun的专栏
10-17
5万+
目录
泰勒
公式 余项 1、佩亚诺(Peano)余项: 2、施勒米尔希-罗什(Schlomilch-Roche)余项: 3、拉格朗日(Lagrange)余项: 4、柯西(Cauchy)余项: 5、积分余项: 带佩亚诺余项 参考资料
泰勒
公式
泰勒
公式是将一个在x=x0处具有n阶导数的
函数
f(x)利用关于(x-x0)的n次多项式来逼近
函数
的方法。 若
函数
f(x)在包含x0的某个...
常用
泰勒
展开
每天的学习笔记
09-19
3万+
常用
泰勒
展开
关于
泰勒
展开的细节-《三体》读后感的读后感...
Netfilter,iptables/OpenVPN/TCP guard:-(
07-30
1万+
上周写完了《《三体》读后思考-
泰勒
展开/维度打击/黑暗森林》后收到一些邮件,进一步思考了关于
泰勒
展开的意义。也许我掌握的那些网络技术比如Linux Netfilter,NAT之类,太过底层太过小众,所以大家几乎都是没有感兴趣的,倒是这种科普性质的文章和那些吐槽类的文章,会引发一系列的互动,这对我来讲是好事,因为我喜欢跟人交流技术和思想。声明本来这篇文章应该添加在《三体》读后感后的“补遗”一节呢,后来
常见
泰勒
展开式
Arcobaleno
10-31
9218
如何理解
泰勒
展开式
,他有何用途?
风起云涌
02-22
1万+
一、
泰勒
展开思想的由来(也就是学习的时候老师讲的背景) 例如 sinx,conx,e^x
函数
,当x=2.3时,这个值等于多少,这些数据通常需要借助计算器才可以计算出来,而且只是得到一个近似值。因此数学家们就开始了漫长的思考之路,有没有办法跟这些表达式的图像长得差不多的一个多项式
函数
呢?,说白了就是sinx,conx这类
函数
能不能用多项式去表达呢? 这就是
泰勒
展开式
的出发点!! 那
泰勒
...
多元
函数
的
泰勒
(Taylor)
展开式
红色石头的专栏
04-20
17万+
多元
函数
的
泰勒
展开式
实际优化问题的目标
函数
往往比较复杂。为了使问题简化,通常将目标
函数
在某点附近展开为
泰勒
(Taylor)多项式来逼近原
函数
。 一元
函数
在点xkx_k处的
泰勒
展开式
为: f(x)=f(xk)+(x−xk)f′(xk)+12!(x−xk)2f′′(xk)+onf(x) = f(x_k)+(x-x_k)f'(x_k)+\frac{1}{2!}(x-x_k)^2f''(x_k)+o^n
泰勒
公式的详细推导
weixin_40100502的博客
06-01
11万+
在数学中,
泰勒
公式是一个用
函数
在某点的信息描述其附近取值的公式。如果
函数
足够光滑的话,在已知
函数
在某一点的各阶导数值的情况之下,
泰勒
公式可以用这些导数值做系数构建一个多项式来近似
函数
在这一点的邻域中的值。
泰勒
公式还给出了这个多项式和实际的
函数
值之间的偏差。(其实就是用多项式
函数
去...
技术破局:AI程序员2021如何跳出舒适圈?!
CSDN学院
01-05
2万+
近日,IDC调研机构与浪潮联合发布《2020-2021 中国人工智能计算力发展评估报告 》。报告显示,预计2020 年中国AI市场规模将达到 62.7亿美元,2019~2024 年的年复合增长率为 30.4%,中国成为全球各个区域里面AI的投资发展最快的一个国家。 报告从AI算力产业发展趋势、市场规模、区域算力分布和行业AI算力保有程度等多个角度进行全面综合评估,旨在评估中国人工智能发展的现状,为推动产业AI化发展提供极具价值的参考依据和行动建议。 同时小编注意到据 BOSS直聘发布的《2020人才资.
泰勒
展开式
的理解
Chaolei3的博客
12-28
2676
概念
泰勒
公式是将一个在x=x0处,且具有n阶导数的
函数
P(x)利用关于(x-x0)的n次多项式来逼近
函数
f(x)【我们想要近似的
函数
】的方法。
泰勒
展开式
在x=x0点展开形式为:【即f(x)只是用来近似t(x)在x0点附近的
函数
值】 其本质就是为了在某个点附近,用多项式
函数
来近似其他
函数
。之所以要使用多项式来近似是因为多项式具有好计算,易求导,且好积分等一系列的优良性质。 下面的是近似多项式P
一些次常用
函数
的
泰勒
(麦克劳林)
展开式
08-24
一些次常用
函数
的
泰勒
(麦克劳林)
展开式
感觉很不错
关于
泰勒
展开式
的深刻理解
pursue_my_life的博客
06-03
1万+
看到了知乎上的深入浅出的解释: 链接稍后补上我们先假设Taylor发明Taylor公式的原因是因为taylor想要很方便的计算 f(x) = cos x 的值,于是乎出现了下面的问题 我们不妨想一想,如果我们 如果不将(0, f(x))作为起始点, 而将(a, f(a) ) 作为起始点, 会推出以下结果总结Taylor公式 ——> 用多项式仿造曲线 ——> 求值佩亚诺余项...
泰勒
展开式
-牛顿法优化
Nine days
07-05
3832
泰勒
公式的表达式:就是下面这个看起来很复杂的公式。 首先还是先回到
函数
的局部线性近似这个概念。举个栗子,例如
函数
,当自变量有变化时,即,自变量y会变化,带入到
函数
里面就有当时,上式的后两项是的高阶无穷小舍去的话上式就变成了也就是说当自变量x足够小的时候,也就是在某点的很小的邻域内,是可以表示成的线性
函数
的。线性
函数
计算起来,求导起来会很方便。对于一般
函数
,当在某点很小领域内我们也可以...
多元
函数
的
泰勒
展开公式
Jie Qiao的专栏
07-04
3万+
泰勒
定理
泰勒
展开是一个很有趣的方法。应该大部分人都看过下面这么一条定理:
泰勒
定理:若
函数
f(x)在闭区间[a,b]上存在直至n阶的连续导
函数
,在开区间(a,b)内存在(n+1)阶导
函数
,则对任意给定的x,x0∈[a,b]x,x0∈[a,b]x,x_0\in [a,b],至少存在一点ξ∈(a,b)ξ∈(a,b)\xi \in (a,b),使得 f(x)=+f(x0)+f ′(x...
转载-怎样更好地理解并
记忆
泰勒
展开式
?
weixin_33772645的博客
04-01
145
声明:本文相关所有内容完全来自于退乎-回答-怎样更好地理解并
记忆
泰勒
展开式
? 原文中前一小部分不再描述,直接从文章的核心思想处说起; 本段的核心思想是仿造。 当我们想要仿造一个东西的时候,无形之中都会按照上文提到的思路,即先保证大体上相似,再保证局部相似,再保证细节相似,再保证更细微的地方相似……不断地细化下去,无穷次细化以后,仿造的东西将无限接近真品。真假难辨。 这是每个人都明白的生活经验。 ...
©️2020 CSDN
皮肤主题: 点我我会动
设计师:上身试试
返回首页