Anaconda升级与Spyder升级与报错处理(镜像源更新设置)

具体操作如下:

step1:首先在菜单中,以管理员的身份启动 Anaconda Prompt,如图1所示; 


step2:升级conda(升级Anaconda前需要先升级conda)命令为:

conda update conda


step3:升级anconda命令为:

conda update anaconda


step4:升级python命令为:

conda update python


step5:升级spyder命令为:

conda update spyder
  • 安装/更新单个库:以安装 更新 scipy 为例
pip install scipy
pip install scipy --upgrade
# 或者
conda install scipy
conda update scipy

 
step6:

conda update --all

ps:

使用conda安装软件,总是出现无法安装的提示:

Collecting package metadata: failed

UnavailableInvalidChannel: The channel is not accessible or is invalid.
  channel name: anaconda/cloud/bioconda
  channel url: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
  error code: 404

You will need to adjust your conda configuration to proceed.
Use `conda config --show channels` to view your configuration's current state,
and use `conda config --show-sources` to view config file locations.

原来清华大学停止了镜像服务:
关于停止Anaconda镜像服务的通知
https://mirror.tuna.tsinghua.edu.cn/news/close-anaconda-service/
解决方法:
使用

conda config --remove-key channels

将提示的镜像源全部删除即可。

增加r、conda-forge、bioconda的channels:

conda config --add channels r # R软件包
conda config --add channels conda-forge # Conda社区维护的不在默认通道中的软件
conda config --add channels bioconda # 生物信息学类工具

 

在执行 conda config 命令的时候
会在当前用户目录下创建 .condarc 文件,可以查看更换源前后该文件内容的变化。

查看配置文件

conda config --show

添加中科大源

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/

conda config --set show_channel_urls yes

显示安装的频道

 conda config --set show_channel_urls yes 

查看已经添加的channels

conda config --get channels

已添加的channel在哪里查看

vim ~/.condarc

 

此时,目录 C:\Users<你的用户名> 下就会生成配置文件.condarc,内容如下:

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults
show_channel_urls: true

各系统都可以通过修改用户目录下的 .condarc 文件:

清华大学开源软件镜像站 https://mirror.tuna.tsinghua.edu.cn/help/anaconda/

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud


上海交通大学开源镜像站

channels:
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main/
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/free/
  - https://mirrors.sjtug.sjtu.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true


中国科学技术大学 USTC Mirror

channels:
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
ssl_verify: true


————————————————

2、修改配置文件

删除上述配置文件 .condarc 中的第三行,然后保存,最终版本文件如下:

 

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
show_channel_urls: true

3、查看是否生效

通过命令

conda info 

查看当前配置信息

当然, 也可以用这个命令进行搜索

 conda search spyder

安装完成后,可以用“which 软件名”来查看该软件安装的位置:

 which gatk

如需要安装特定的版本:

conda install 软件名=版本号
conda install spyder=3.7

这时conda会先卸载已安装版本,然后重新安装指定版本。

查看已安装软件:

conda list

更新指定软件:

conda update spyder

卸载指定软件:

conda remove spyder

==========================慎用===========================

异常终极解决方式:

      File "E:\software\Anaconda3\lib\json\__init__.py", line 348, in loads
        return _default_decoder.decode(s)
      File "E:\software\Anaconda3\lib\json\decoder.py", line 337, in decode
        obj, end = self.raw_decode(s, idx=_w(s, 0).end())
      File "E:\software\Anaconda3\lib\json\decoder.py", line 355, in raw_decode
        raise JSONDecodeError("Expecting value", s, err.value) from None
    json.decoder.JSONDecodeError: Expecting value: line 362873 column 16 (char 10796875)

 ## 删除索引缓存、锁定文件、未使用过的包和tar包。

conda clean --all

==================================

conda环境使用基本命令

conda update -n base conda        #update最新版本的conda
conda create -n xxxx python=3.5   #创建python3.5的xxxx虚拟环境
conda activate xxxx               #开启xxxx环境
conda deactivate                  #关闭环境
conda env list                    #显示所有的虚拟环境
conda info --envs                 #显示所有的虚拟环境


查看指定包可安装版本信息命令
参考:https://blog.csdn.net/qq_35203425/article/details/79965389
查看tensorflow各个版本:(查看会发现有一大堆TensorFlow源,但是不能随便选,选择可以用查找命令定位)

anaconda search -t conda tensorflow  


查看指定包可安装版本信息命令

anaconda show <USER/PACKAGE>  


查看指定anaconda/tensorflow版本信息

anaconda show tensorflow


输出结果会提供一个下载地址,使用下面命令就可指定安装1.8.0版本tensorflow

conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.8.0 


更新,卸载安装包:

conda list         #查看已经安装的文件包
conda list  -n xxx       #指定查看xxx虚拟环境下安装的package
conda update xxx   #更新xxx文件包
conda uninstall xxx   #卸载xxx文件包



删除虚拟环境

conda remove -n xxxx --all   //创建xxxx虚拟环境



清理(conda瘦身)
conda clean就可以轻松搞定!第一步:通过conda clean -p来删除一些没用的包,这个命令会检查哪些包没有在包缓存中被硬依赖到其他地方,并删除它们。第二步:通过conda clean -t可以将删除conda保存下来的tar包。

conda clean -p      //删除没有用的包
conda clean -t      //删除tar包
conda clean -y -all //删除所有的安装包及cache



参考:https://blog.csdn.net/menc15/article/details/71477949

重命名env
Conda是没有重命名环境的功能的, 要实现这个基本需求, 只能通过愚蠢的克隆-删除的过程。
切记不要直接mv移动环境的文件夹来重命名, 会导致一系列无法想象的错误的发生!

conda create --name newname --clone oldname      //克隆环境
conda remove --name oldname --all      //彻底删除旧环境


conda自动开启/关闭激活
参考:https://www.cnblogs.com/clemente/p/11231539.html

conda activate   #默认激活base环境
conda activate xxx  #激活xxx环境
conda deactivate #关闭当前环境
conda config --set auto_activate_base false  #关闭自动激活状态
conda config --set auto_activate_base true  #关闭自动激活状态


Conda 安装本地包
有时conda或pip源下载速度太慢,install a过程中会中断连接导致压缩包下载不全,
此时,我们可以用浏览器等工具先下载指定包再用conda或pip进行本地安装

#pip 安装本地包
pip install   ~/Downloads/a.whl
#conda 安装本地包
conda install --use-local  ~/Downloads/a.tar.bz2

 

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 点我我会动 设计师:上身试试 返回首页